Characterization and comparative functional analysis in yeast of a Schistosoma mansoni Rho1 GTPase gene

Tuílio Marcos Santos, Carlos Renato Machado, Glória Regina Franco, Sérgio Danilo Junho Pena *

Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, Belo Horizonte CEP 30161-970, MG, Brazil

Received 7 May 2002; received in revised form 3 September 2002; accepted 3 September 2002

Abstract

Low-molecular weight GTP-binding proteins (LMWGPs) of the Ras superfamily are believed to play a role in Schistosoma mansoni female development and egg production. Here we describe the characterization of a novel S. mansoni gene (SMRHO1), highly homologous to Rho-type LMWGPs from several other organisms and encoding a polypeptide with 193 amino acids and an estimated molecular mass of 21.8 kDa. SMRHO1 complemented a Saccharomyces cerevisiae rho1 null mutant strain even in restrictive temperature and calcium concentration, in contrast with the human RHOA GTPase that was not able to provide complementation in such conditions. Comparison of the amino acid sequence of the z3-helix loop7 regions of the two proteins allowed the identification of the proline 96 and threonine 100 amino acid residues of human RHOA as the most probable determinants of the complementation differences. We generated SMRHO1 mutants (smrho1E97P, smrho1L101T and smrho1E97P, L101T) by site directed mutagenesis and reproduced the conditional lethality phenotype at high temperature, providing strong evidence that the related amino acid positions (Gln101 and Ile105) in the Rho1 GTPase are indeed important for regulation of the cell wall synthesis performed by this protein in yeast. The observation that specific amino acid positions seem to be important for the different functions performed by the Rho GTPases leads to the idea that SMRHO1 might be a useful target in the development of new anti-schistosomiasis drugs, although it does share high sequence homology with the human RhoA GTPase.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Schistosoma mansoni; Complementation; Yeast; Rho GTPase; Site directed mutagenesis

1. Introduction

Schistosoma mansoni is a digenetic trematode that causes schistosomiasis, a disease that afflicts more than 200 million people worldwide [1]. Since 1992, the S. mansoni Genome Project has contributed to the discovery of close to 10,000 new genes of this parasite [2]. The study of important genes for S. mansoni survival and pathogenicity is the first step for the development of new drugs and vaccines for schistosomiasis control.

Following penetration into the human host skin as cercariae, the parasites mature into adult male and female forms that live in constant copulation in the veins of the portal system and ovulate for the duration of their lives. There is evidence of involvement of low-molecular weight GTP-binding proteins (LMWGPs) of the Ras superfamily in the S. mansoni female maturation process and egg production [3,4]. This is of great interest for schistosomiasis control because inflammatory reactions triggered by the eggs, and not by the worms themselves, are the cause of liver fibrosis, the most serious pathological lesion of the disease.

Abbreviations: GDP, guanine diphosphate; GTP, guanine triphosphate; LMWGPs, low-molecular weight GTP-binding proteins; SMRHO1, Schistosoma mansoni Rho1 GTPase gene; SMRHO1, S. mansoni Rho1 GTPase protein; smrho1, S. mansoni Rho1 GTPase mutant gene; UPGMA, unweighted pair group with arithmetic mean.

* Note: The nucleotide sequence reported in this paper has been submitted to the GenBank™/EMBL Data Bank with the accession number AF140785.

* Corresponding author. Tel.: +55-31-3284-8000; fax: +55-31-3227-3792

E-mail address: spena@dcc.ufmg.br (S.D.J. Pena).
The Ras superfamily members (Ras, Rho, Rab, Sar1/Arf, and Ran) are proteins capable, through the binding and hydrolysis of GTP, to create a switch between an active GTP-bound conformation and an inactive GDP-bound conformation [5,6]. The ‘on–off’ activity of the LMWGs is controlled by several regulatory proteins: the guanine nucleotide exchange factors (GEFs) promote the exchange of the GDP for GTP; the GTPase-activating proteins (GAPs) accelerate the hydrolysis of the GTP to GDP; and the GDP dissociation inhibitors (GDIs) inhibit the dissociation of the GDP from the GTPase [7]. LMWGs receive upstream signals through their regulators and transduce signals to a multitude of effector molecules, while remaining in the GTP-bound form [8–10]. In this fashion, the members of the Ras superfamily perform important regulatory roles, controlling a variety of cellular activities, such as cell cycle, gene expression, cytoskeletal reorganization, vesicle trafficking, nucleocytoplasmic transport and microtubule organization [6,11–14].

It has been shown that a reduction of isoprenoid end-products synthesis by mevinolin, an inhibitor of hydroxymethylglutaryl-CoA reductase, was capable of decreasing egg production and blocking the schistosomiasis pathology in infected mice [4] as well as causing loss of parasite viability at higher drug concentrations [15]. Similar effects were observed in schistosome females as the result of prenyltransferase activity inhibition by BZA-5B [16]. This is important because the blocking of prenylation of a 25 kDa group of GTP-binding proteins from schistosomes using BZA-5B led to the speculation that LMWGs could be playing a role in the egg laying mechanism [17]. These observations stimulated the search for LMWGs that might be associated with the regulation of signal transduction pathways in S. mansoni. A gene encoding a RAB-related GTP-binding protein was cloned from S. mansoni genomic DNA using degenerate oligonucleotide primers in an attempt to identify LMWGs possibly involved in female egg production [16]. The in vitro translation product of this SMRAB gene is geranylgeranylated and the recombinant protein binds GTP. Using an immunocytological approach, Schussler et al. (1997) showed that the Ras, GAP and MAP kinases displayed sexual and developmental regulation in schistosome extracts [3]. The involvement of these molecules in the female maturation process was not unexpected, since the Ras, GAP and MAP kinases participate in the same signal transduction pathways known to regulate cell proliferation events. More recently, a schistosome cDNA encoding a gene highly similar to K-Ras from various organisms was isolated and characterized [18]. This S. mansoni K-Ras homologue gene is overexpressed in females in comparison with male worms and it has been detected in all developmental stages of the parasite. The recombinant SMRAS protein is farnesylated in vitro and the native protein was identified by immunocytolocalization associated with the worm subtegument.

As part of the S. mansoni Genome Project, we isolated from a cercariae library a cDNA clone highly homologous to the Rho-type LMWGP genes from several organisms [19]. We report here the complete cDNA and genomic sequences of this gene. Sequence alignments, molecular phylogenetic analysis, and complementation of a Saccharomyces cerevisiae rho1 null mutant strain allowed us to identify it as a Rho-type LMWGP (SMRHO1), the first gene of this class to be identified in S. mansoni.

The complementation of yeast containing a rho1 deletion with SMRHO1 occurred even in restrictive conditions of temperature and calcium concentration and was much more complete than the only conditional complementation previously observed, with the human RHOA GTPase [20]. Comparison of the α3-helix loop7 amino acid sequences of the S. cerevisiae RHO1, human RHOA and SMRHO1 GTPases, allowed identification of Pro96 and Thr100 amino acid residues in human RHOA as the most probable determinants of the difference in the complementation ability of SMRHO1 and RHOA GTPases. Indeed, when we used site directed mutagenesis to replace Glu97 and Leu101 residues of SMRHO1 by Pro and Thr, respectively, SMRHO1 became only capable of conditional complementation of the S. cerevisiae rho1 null mutant strain. Consequently, although highly homologous to human RHOA, the S. mansoni Rh1 GTPase may prove to be an interesting target for the development of new anti-schistosomiasis drugs.

2. Materials and methods

2.1. Cloning procedures and DNA sequencing

The proofreading Pfu DNA polymerase (Stratagene) was used in PCR amplifications for subcloning. Amplification products used in subcloning or transformation procedures were previously purified using the Wizard PCR-Prep kit (Promega). Cloning into pUC18 vector was done using the SureClone Ligation Kit (Amersham Biosciences). Plasmid purifications were done by alkaline lysis using the Wizard Plus SV Miniprep kit (Promega). DNA sequencing reactions were prepared using Thermo Sequenase Sequencing Kit (Amersham Biosciences) with fluorescent M13 primers and carried out in an A.L.F. DNA sequencer (Amersham Biosciences).
2.2. cDNA sequencing

The SMC0220R cDNA clone containing the S. mansoni Rho GTPase gene was obtained by random selection from a S. mansoni cercariae library as described previously [19]. Initially the 5' and 3' ends of the SMC0220R cDNA clone was sequenced using M13 primers. Subsequently, the PTV3 (5'-TGA TGT TCC CAT TGT CTT AG-3') and PTV4 (5'-AAA TCA AAT CTC AGA CAA TTG-3') primers were designed to amplify the internal region of the insert. The 291 bp internal fragment amplified was subcloned into pUC18 vector and sequenced on both strands. In order to obtain a reliable full-length sequence, the ends of the insert were amplified using the M13 reverse/PTV5 (5'-CTA AGA CAA TGG GAA CAT CA-3') and PTV6 (5'-TGT CTA GAT TTG ATT TTC CG-3') universal primer pairs. The generated fragments of 527 and 234 bp, respectively, were subcloned into pUC18 and sequenced on both strands.

2.3. Genomic sequencing

We used the SMRHOF (5'-GCC AAC AAT GGC GAG TG-3') and PTV4 primer pair to amplify the genomic sequence of S. mansoni Rho GTPase gene. The PCR amplification generated a fragment of about 700 bp. This fragment was excised from the agarose gel, purified using Gene Clean kit (Bio 101), cloned into pUC18 vector and sequenced on both strands. This 291 bp internal fragment amplified was subcloned into pUC18 and sequenced on both strands.

2.4. Sequence analyses

Sequence alignments and open reading frame (ORF) search were done using the DNASIS program (Hitachi). Homology searches were performed using BLAST programs [21] for sequence similarity search at NCBI. Alignments of amino acid sequences and UPGMA analysis were performed with the software DIALIGN 2.1 [22].

2.5. Yeast strains and media

All yeast strains employed are listed in Table 1. The diploid strain BY4727/36 was obtained crossing by replica plating BY4727 with BY4736 strain [23], both of them obtained from ATCC. YPD rich medium was as described [24]. YNB minimal medium was purchased from Difco and 2% glucose or 2% galactose was included as carbon source when required.

Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY4727</td>
<td>MATa his3A200 leu2A0 lys2A0 met15A0 trplA63 uraA0</td>
<td>[23]</td>
</tr>
<tr>
<td>BY4736</td>
<td>MATa ade2A::hisG his3A200 met15A0 trplA63 uraA0</td>
<td>[23]</td>
</tr>
<tr>
<td>SPYD</td>
<td>MATa ade2A::hisG his3A200 met15A0 trplA63 uraA0 Arho1::HIS3</td>
<td>This study</td>
</tr>
<tr>
<td>CMY</td>
<td>MATa ade2A::hisG his3A200 met15A0 trplA63 uraA0 leu2A0 lys2A0 Arho1::HIS3</td>
<td>This study</td>
</tr>
<tr>
<td>pYEDP(SMRH01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.6. Cloning on yeast galactose-inducible overexpression vector

The S. mansoni Rho GTPase gene was amplified from the SMC0220R cDNA clone using SMRHOF and SMRHOR (5'-TTA GAG AAC AGT GGA GAT CA-3') ORF flanking primers and cloned into pUC18. The S. cerevisiae RHO1 gene, containing its promoter (0.2 kb) and terminator (0.4 kb) regions, was obtained by direct amplification from yeast colony using primers RHOSACF (5'-ACA TGA GAT CTA CGC AGA TCA-3') and RHOSACR (5'-CAT CGA TCA TTC TCT TGA GTA-3'). The amplified fragment (1226 bp) was previously digested with DraI in order to remove the promoter region, cloned into pUC18 and sequenced on both ends. Thereafter, the fragments containing SMRH01 and RHO1 were recovered from pUC18 by digestion with BamHI/KpnI and cloned into the same restriction sites of the pYEDP60-2-ADE2-URA3-GAL10-CYC1 plasmid (a kind gift of Dr Francisco Nóbrega, UNIVAP, São Paulo) for overexpression in yeast under control of GAL10-CYC1 promoter induced by galactose [25].

2.7. Yeast genetic manipulation methods

Transformations were done with 1 µg of purified linear DNA or 0.5 µg of plasmid DNA by LiAc/SS-DNA/PEG procedure [26]. The diploid S. cerevisiae strain SPYD (Table 1) containing one of the RHO1 alleles disrupted was obtained by the PCR-mediated gene disruption method [23] using the diploid strain BY4727/36. The 60 mer primers RHO1HIS3F (5'-ATG TCA CAA CAA GTT GGT AGT ATC AGA AGA AAG CTG GCT TCA TTC AAT CAT CTG GCT TCA TTC CAT-3') and RHO1HIS3R (5'-GCT AGA AAT ATG AAC CTT CCA CCA AAA CTG AGG TTG GAG GAG TAT CAT ACT GTT CGT ATA-3') were used to amplify the HIS3 auxotrophic marker gene cloned into pDIS plasmid (a kind gift of Dr Francisco Nóbrega,
UNIVAP, São Paulo). The 1243 bp amplified product contained at both ends 40 bp of sequence of the *S. cerevisiae* RHO1 was purified and transformed into BY4727/36 diploid strain for disruption of one of the RHO1 gene copies through a homologous recombination event. Disrupted mutants were selected on plates of YNB-glucose containing the required nutrients except histidine. PCR amplification of a 788 bp hybrid fragment containing part of RHO1 and HIS3 genes using RHOSACF and HIS311 (5′-AAC CCT ATA CCT GTG TGG A-3′) primers, confirmed the insertion of the auxotrophic marker in place of one of the RHO1 genomic copies in the yeast clones (data not shown). The SPYD strain was transformed with the *S. mansoni* Rho and yeast Rho1 genes cloned into pYEDP galactose-inducible plasmid and the clones were selected on YNB-glucose containing the required nutrients. The cells transformed with pYEDP (SMRHO1) were induced to sporulate in order to obtain rho1 null mutant cells complemented with the *S. mansoni* Rho GTPase gene. Sporulation of the diploid cells in liquid medium was induced as described [23]. The sporulated cultures were treated with NovoZym (Sigma) to digest the ascus wall, vortexed vigorously for 2 min to release spores from the asci and subsequently heated at 58 °C for 15 min to kill any remaining vegetative cells [24]. Spores dilutions were spread on YNB-galactose plates supplemented with the required nutrients. The rho1 null mutant strain CMY (Table 1), complemented by SMRHO1 gene galactose-inducible overexpression, was confirmed by negative PCR amplification of RHO1 gene using RHOSACF/ RHOSACR primers, amplification of SMRHO1 gene using SMRHOFS/MRHO1R primers, and amplification of a 788 bp hybrid fragment, containing part of HIS3 and RHO1 genes, using RHOSACF/HIS311 primers (data not shown). The PCR products were also sequenced.

2.8. Site directed mutagenesis of SMRHO1

Megaprimer PCR method [27] was used to generate the smrho1ES7P, smrho1LI0IT double mutant of SMRHO1 gene. SMRHOES7P (5′-AGT TTT GCA AAC ATT CGA GA-3′), SMRHO1L0IT (5′-GG ACA CCA GAA ATC CGT C-3′) and SMRHO97P101IT (5′-TCCA GAA AAA TGG ACA CCA GA-3′) primers, containing the mutations ES7P, LI0IT, and ES7P-LI0IT (highlighted in bold), respectively, were used in a first PCR round with SMRHO1 primer to produce the megaprimer. SMRHOFS primer and the purified megaprimer were used to generate SMRHO1 mutant copies in a second PCR round. SMRHO1 mutant copies were cloned into pUC18 and sequenced on both strands to confirm the presence of the mutations. The 0.2 kb RHO1 promoter region was PCR amplified from yeast colony using PROMORHOF (5′-CTG AAG CTT ACC AGC AGG AAT TCG-3′) and PROMORHOR (5′-CGT CAG TCT AGT ATA ATT-3′) primers containing HindIII and PstI sites (showed underlined), respectively. The pYTS plasmid was constructed introducing the amplified RHO1 promoter region into HindIII/PstI gap of the pYEpplac112 plasmid [28] (a kind gift by Dr José Miguel Ortega, UFMG, Belo Horizonte). Subsequently, pYTS1, pYTS2, pYTS21, pYTS22, and pYTS23 plasmids were constructed introducing RHO1, SMRHO1, smrho1ES7P, smrho1LI0IT and smrho1ES7P, LI0IT, respectively, into BamHI/KpnI gap, positioned immediately downstream of the PstI site of pYTS. These constructions and pYTS were transformed into CMY strain and the transforming clones were selected at 23 °C in YNB-glucose plates containing only leucine, lysine, and methionine. In these conditions, the galactose-inducible overexpression of SMRHO1 is inhibited and the yeast only express the wild type and mutant genes cloned into the pYTS plasmids under control of the RHO1 promoter. The presence of wild type and mutant gene copies in the different mutant clones was confirmed by sequencing of the corresponding PCR products.

3. Results

3.1. cDNA sequence analyses

The partial sequences obtained after sequencing the subclones were aligned and produced a 1016 bp consensus that represents the full-length SMC0220R cDNA clone. We observed, however, that the insert was a chimera of two cDNA molecules joined by the adapters used in the cercarial library construction. The actual cDNA molecule encoding the *S. mansoni* Rho GTPase homologous gene represented 841 bp of this sequence (GenBank accession number AF140785). The most significant ORF found was 579 nt long and encoded a putative polypeptide of 193 amino acids with an estimated molecular mass of 21.8 kDa. The cDNA also contained a long 3′-untranslated portion, which is a known feature of *S. mansoni* transcripts. We named this gene ‘SMRHO1′ for *S. mansoni* homologue of the Rho1 and RhoA-type LMWGP1s. In Fig. 1A, we show the alignment of the amino acid sequence of SMRHO1 with the Rho GTPases from 11 other species. A noteworthy feature was the insertion of a serine residue very close to the N-terminal end, which has not been observed in any of the other Rho GTPase homologs examined (Fig. 1A). Another interesting element was the presence of the polar amino acid aspartate (position 191) substituting for the first (generally aliphatic) amino acid of the C-terminal prenylation motif CAAX (Fig. 1A). Apart of these two
peculiarities, the putative amino acid sequence of SMRHO1 contained all other consensus sequences conserved among the Rho-type GTPases [5,29,30], and was highly homologous to all the LMWGPs (Fig. 1A).

A phenogram constructed using the UPGMA algorithm revealed two major clusters: the first (lower main branch in Fig. 1B) corresponding to the yeasts (S. cerevisiae, Schizosaccharomyces pombe, Filobasidiella neoformans...
and Candida albicans) and the second (upper main branch in Fig. 2B) belonging to multicellular organisms. Within the latter, the Schistosome Rho GTPase constituted as an isolated branch (Fig. 1B).

3.2. Genomic sequence analyses

Partial sequences obtained from the genomic subclones were aligned to produce a 722 bp consensus genomic sequence that contained an ORF identical to the \textit{SMRHO1} and three small introns (GenBank accession number AF140785). The first intron has 32 bp and is located between switch I and II domains of the protein. The second intron, of 33 bp, is in the middle of the ORF. The last intron is also 33 bp long and is located in the SAK motif of the protein, which participates in interactions with the guanine of GTP molecule in the active site. All introns interrupt the protein frame. The canonical donor/acceptor splice sites are conserved in all exon/intron junctions.

3.3. Complementation of a \textit{S. cerevisiae} rho1 null mutant strain by \textit{SMRHO1} galactose-inducible overexpression

The \textit{rho1} null mutation in yeast is lethal. For this reason, we obtained first a heterozygous diploid strain with one of the \textit{RHO1} alleles deleted (SPYD strain, Table 1), which was viable at both 30 °C and 37 °C (data not shown). To investigate the complementation phenotype of \textit{SMRHO1} gene in yeast cells, we transformed the SPYD strain with a plasmid (pYEDP) containing the \textit{S. mansoni} Rho1 GTPase gene under control of a galactose-inducible promoter GAL10. After sporulation of the SPYD cells containing the plasmid pYEDP(\textit{SMRHO1}), we could then successfully select on plates containing galactose a yeast \textit{rho1} null mutant haploid strain (CMY, Table 1) complemented by overexpression of the \textit{SMRHO1} gene. This complementation could be shown to be due to the presence of \textit{SMRHO1} gene, since CMY cells died in YPD rich medium containing glucose as carbon source, in which the expression of the \textit{S. mansoni} GTPase gene in pYEDP was inhibited (Fig. 2A and B). The \textit{SMRHO1} gene was able to complement the yeast \textit{rho1} null mutant strain CMY even under temperature and osmotic stress conditions such as at 37 °C and in presence of 300 mM CaCl2 (Fig. 2A and B). The \textit{S. mansoni} Rho1 gene overexpression in a yeast wild-type strain \{\textit{BY4736}[pYEPD(\textit{SMRHO1})]\} did not produce significant alterations in the growth curve of these cells if compared with the yeast \textit{RHO1} gene overexpression in the same wild-type strain \{\textit{BY4736}[pYEPD(\textit{RHO1})]\} (Fig. 3). However, the \textit{rho1} null mutant strain CMY, which is complemented by \textit{SMRHO1} overexpression, showed cell enlargement (data not shown) and also a delay in the growth in the same fashion as wild-type strain overexpressing \textit{RHO1} gene \{\textit{SPYD [pYEPD(RHO1)]}\} (Fig. 3). It occurred probably due to an arrest in the cell cycle, as previously reported for \textit{RHO1} overexpression in yeast [31]. The wild-type strain containing only the plasmid \{\textit{BY4736}[pYEPD]\} was used as growth control.

3.4. Comparison among the sequence of the \(\alpha3\)-helix loop7 regions and functional complementation in yeast performed by \textit{SMRHO1} and other Rho GTPases

The \(\alpha3\)-helix loop7 had been previously defined as the region of the human \textit{RHOA} molecule responsible for its inability to complement yeast \textit{rho1} null mutants at 37 °C or in the presence of 300 mM CaCl2 [20]. \textit{Drosophila melanogaster} RhoA has its \(\alpha3\)-helix loop7
region identical to human RHOA and it also cannot complement yeast rho1 null mutants at 37 °C or in the presence of 300 mM CaCl2 [32]. In order to try identify the exact amino acid residues responsible for the complementation differences seen between S. mansoni and human Rho GTPase genes, we aligned the sequence of S. cerevisiae RHO1 α3-helix loop7 with the corresponding regions of C. albicans RHO1, human RHOA, and SMRHO1 GTPases (Fig. 4). The C. albicans RHO1 protein was included in the alignment because it fully complements S. cerevisiae rho1 null mutants under any culture conditions [33]. The C. albicans sequence showed very few amino acid alterations in relation to S. cerevisiae RHO1, none with apparent functional importance to complementation [33]. However, amino acid differences of the human RHOA and SMRHO1 α3-helix loop7 regions, in comparison with S. cerevisiae rho1, were in greater number, determining occasionally significant hydropathic changes (Fig. 4). The discrepancies of the amino acid constitution of the α3-helix loop7 regions of the Rho GTPases and the ability of each one to complement S. cerevisiae rho1 null mutants suggest that proline 96 and threonine 100 at α3-helix would be the best candidate amino acids responsible for the conditional complementation by human RHOA.

3.5. The phenotypic effects of the smrho1E97P, smrho1L101T, and smrho1E97P, L101T mutants in yeast

To test the importance of the proline 96 and threonine 100 residues for the conditional complementation of human RHOA, we used site directed mutagenesis to obtain SMRHO1 containing E97P, L101T, and E97P-L101T (the discrepancy in residue numbers is due to the serine insertion in SMRHO1 N-terminal). The three mutant SMRHO1 genes, the wild type SMRHO1 and the yeast RHO1 genes were cloned into the pYTS plasmid under control of yeast Rho1 promoter. After transformation of these plasmids into rho1 null mutant strain CMY, we examined their phenotypes in YNB-glucose plates, in which the galactose-inducible SMRHO1 overexpression was, thus, inhibited. CMY cells containing only the empty pYTS plasmid were unable to grow under any of the tested conditions, while the cells expressing SMRHO1 and RHO1 wild-type genes under control of the RHO1 promoter showed a normal growth even at 37 °C, as expected (Fig. 5). However, the smrho1E97P, L101T double mutant was unable to grow at 37 °C stress temperature without the presence of 0.5 M sorbitol as osmotic stabilizer (Figure 6A and B). The other single mutant, smrho1E97P, showed less deleterious effects in growth when compared with wild type genes (Fig. 5A and B).

4. Discussion

We here describe, the characterization of the first Rho GTPase gene (SMRHO1) isolated from S. mansoni, encoding a protein that is highly homologous to the Rho-type LMWGPs of several species (Fig. 1A). The Rho-type LMWGPs characteristic motifs [5,29,30] are conserved in SMRHO1, except for the CAAX prenyla-
tion domain that has a polar amino acid substituting the first aliphatic residue. This amino acid substitution may lead to the lack of prenylation in this protein. Further experiments need to be done to verify if there are other genes of this family coding for a protein with the conserved prenylation motif CAAX. Another peculiarity found in the SMRHO1 deduced amino acid sequence was the insertion of a serine residue close to its N-terminal, which has not been observed in any other Rho-type LMWGP (Fig. 1A). As a consequence of such sequence particularities, SMRHO1 occupies in a UPGMA phenogram a isolated branch within the cluster of Rho-type GTPases already identified in other multi-cellular organisms (Fig. 1B).

Additionally, we demonstrated in this work that the SMRHO1 homology (62% identity) to S. cerevisiae RHO1 is sufficient to complement yeast RHO1 GTPase functions, even when overexpressed in a knock out strain (Fig. 2A). The complementation was adequate to permit survival and growth even under stress conditions such as in the presence of 300 mM CaCl₂ or at 37 °C (Fig. 2). In S. cerevisiae, RHO1 is a regulatory protein required for cell cycle control [34] and also mediates bud growth by controlling polarization of the actin cytoskeleton and cell wall maintenance [35–37]. Consequently, SMRHO1 can apparently perform all these RHO1 biological functions. However, we observed some phenotypic alterations, such as cell cycle arrest (Fig. 3) and cell enlargement (data not shown) caused by SMRHO1 overexpression in the rho1 null mutant strain CMY similarly to those previously reported for yeast RHO1 overexpression [31]. In contrast, the growth was apparently normal when SMRHO1 was overexpressed in the wild-type strain BY4736 (Fig. 3), although enlarged cells were present yet (data not shown). Such results suggest a RHO1 dominant effect over the SMRHO1 gene indicating that the S. mansoni GTPase is not able to perform perfectly all the RHO1 gene functions. This can be explained by defective molecular interactions of the SMRHO1 with some of the distinct RHO1 regulatory and effector proteins, due to differences existent among the heterologous and native GTPases.

The functional effect caused by amino acid sequence differences can be addressed by comparing the results of SMRHO1 and human RHOA complementation studies in S. cerevisiae rho1 null mutants. In contrast to the complete complementation provided by SMRHO1, human RHOA overexpression is lethal and its expression under control of the yeast RHO1 promoter produces phenotypes sensitive to high temperatures such as 37 °C [20]. However, in the presence of 0.5 M sorbitol this temperature-sensitive phenotype was suppressed, providing the first evidence that one of the functions performed by the S. cerevisiae RHO1 should be the maintenance of the yeast cell osmotic integrity [20]. Indeed, RHO1 has been identified as an essential regulatory subunit of 1,3-β-glucan synthase, the multi-enzymatic complex that synthesizes 1,3-β-linked glucan, a major structural component of the yeast cell wall [35–37].

Analyses of human RHOA/yeast RHO1 chimeras demonstrated that the α3-helix loop7 region of the RHOA molecule was determinant of the conditional complementation phenotype observed [20]. A simple

![Fig. 5](image-url)
comparison of this region in C. albicans [33], human [20] and schistosome Rho GTPases led us to identify proline 96 and threonine 100 as candidate residues for the functional difference between human RHOA and SMRHO1 during heterologous expression in yeast (Fig. 4). The presence of a proline in position 96 of the human protein may determine a conformational alteration in the α3-helix, reducing its interaction capacity with effector molecules of S. cerevisiae. It is well-known that proline can disrupt α-helices in water-soluble proteins [38,39] and, thus, influence the native structural conformation and protein function and interactions. For instance, the mutation of a glutamic acid to proline disrupts the interaction between cancer-related papillomavirus E6 protein and E6AP cellular protein, providing the first evidence that the E6-binding motif of the E6AP must be helical when bound to E6 [40]. Similarly to proline, threonine is also common in bend regions of kinked alpha helices [39]. The presence of a threonine residue in the position 100 of RHOA could, therefore, produce a conformational difference that would have functional repercussions.

Our results with the smrholE97P, smrholL101T, and smrholE97P, L101T mutants confirmed the importance of proline 96 and threonine 100 for the temperature-sensitive phenotype seen in yeast rho1 null mutant complemented by the human RHOA GTPase. This was most evident when we observed the phenotypic effect of complementation with the smrholE97P and smrholE97P, L101T mutants. The double mutation had a particularly drastic effect onto the capacity of cell wall synthesis regulation under high temperature (Fig. 5A), probably due to an important conformational alteration induced in the α3-helix. However, the single replacement of a leucine by a threonine at position 101 did not have such a severe phenotypic effect at 37 °C (Fig. 5A).

Recently, a set of high temperature-sensitive RHO1 mutants were generated by random PCR and arbitrarily divided in two groups (rho1A and rho1B) according to their functional defects [41]. It is interesting to observe that the smrholE97P and smrholL101T mutants produced in our work are located near to the W104R and E102K mutations grouped as rho1B. This group is made up specifically of mutants that showed defects in activation of the 1,3-β-glucan synthase, the RHO1 effector enzyme responsible for the yeast cell wall synthesis.

In conclusion, even though the Rho GTPases from different species are small molecules that share a high degree of homology, subtle amino acid differences in certain regions can determine their interaction specificity with the multiple regulatory and effector proteins of each organism. Hence, there seems to be a direct relationship between specific regions of Rho-type LMWGP and the different functions performed by these proteins. This is in good agreement with previous observations made on S. cerevisiae RHO1 [34,41]. The SMRHO1 gene may, thus, provided an attractive target for the development of new antischistosomiasis drugs, in spite of its high sequence identity with human RHOA gene.

The Schistosome Genome Project has already generated sequences of many genes and requires intensive efforts on functional genomics [2]. Nevertheless, such endeavor can be restricted by the technical difficulties of parasite genetic manipulation. The use of S. cerevisiae and other model organisms constitutes a powerful tool for investigation of Schistosome gene function, as demonstrated in this work.

Acknowledgements

The authors thank Dr Vasco Azevedo for initial directions on SMRHO1 sequencing, Dr José Miguel Ortega by the use of his laboratory facilities for yeast cultivation, Dr Carlos Rosa for helpful insights on yeast cell biology, and Kátia Barroso for carrying out automated DNA sequencing. This investigation received financial support from the following sources: PRPq-UFGM, PADCT, CNPq, UNDP/WORLD BANK/WHO Special Program for Research and Training in Tropical Diseases (TDR No: 940325 and 940751), USAID/HH (No 264.01.01.04).

References

